مقدمه ای بر بهینه سازی
بهینه سازی در ادبیات مهندسی به فرآیند بهتر کردن هر چیزی اطلاق می شود. یک مهندس و یا یک محقق ایده جدیدی خلق می کندو بهینه سازی به این ایده خلق شده کیفیت می بخشد در فرآیند بهینه سازی تغییراتی بر روی ایده اولیه انجام می شود و با نتایج حاصل از این تغییرات ایده اولیه بهبود می یابد. مادآمی که بتوان ایده مورد نظر را در غالب الکترونیکی نوشت کامپیوتر
وسیله ای مناسب برای بهینه سازی خواهد بود. در زبان برنامه نویسی و ریاضیات بهینه سازی را فرآیند تعریف می کنند که در آن از طریق انتخاب و طراحی ساختارهای دادهای الگوریتم ها و دستورالعمل های مناسب به تولید برنامه های کار آمد(کوچکتر یا سریعتر)دست پیدا کرد. در تعاریف دیگر در بحث بهینه سازی در علوم مهندسی بهینه سازی به معنای رسیدن به وضعیتی بهینه در محاسبات مربوط میباشد که در آن کمترین محاسبه و بیشترین میزان بازدهی میسر می شود. در دهه های اخیر همزمان با مطرح شدن مسا ئل بهینه سازی جدید، روش های جدید بهینه سازی نیز ابداع شدند. مهمترین گروه از این روشهای بهینه سازی روش های تکاملی می باشند که توانایی حل مسائل با ابعاد بزرگ و تعداد متغیرهای زیاد را دارا هستند از سوی دیگر مسائل مورد توجه در علوم مهندسی ازجمله مسائلی هستند که غالبا دارای متغیرهای زیاد می باشند. در این بحث بهینه سازی توابع مطرح میباشد، از این رو استفاده از روشهای تکاملی چندگاه در این گونه مسائل در سال های اخیر مورد توجه قرار گرفته است به همین دلیل در حل مسائل تک هدف مهندسی از الگوریتم بهینه سازی ذرات استفاده بسیاری شده است بهینه سازی توابع ریاضی و یافتن و رسم یک سری اطلاعات در برخی از اطلاعات و داده های غیر خطی از مسائلی بوده که همواره این مسائل مد نظر می باشد .که الگوریتم ها شامل 1- الگوریتم فرا اکتشافی است که از حرکت گروهی از پرندگان یا ماهی ها می باشد 2- الگوریتم ژنتیک، الگوریتم ژنتیک تکنیک جستجویی در علم رایانه برای یافتن راهحل تقریبی برای بهینهسازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتمهای تکامل است که از تکنیکهای زیستشناسی فرگشتی مانند وراثت و جهش استفاده میکند. این الگوریتم برای اولین بار توسط جان هلند معرفی شد. 3-الگوریتم تکاملی کاربرد این روش ها و بهینه سازی و یافت تابع مورد نظر توجه بسیاری از محققین قرار گرفته است.
1- 1 الگوریتم اجتماع پرندگان
الگوریتم بهینه سازی ذرات ،یک الگوریتم بهینه سازی فرا اکتشافی است که از حرکات گروهی از پرندگان یا دسته ای از ماهیان که به شکل گروهی زندگی می کنند، الگوبرداری شده است. این الگوریتم از مفهوم اثر متقابل اجتماعی برای حل کردن مسئله استفاده می کند. در واقع این الگوریتم رفتار گروهی از پرندگان را شبیه سازی می کند به سنا ریو زیر توجه کنید:
یک گروه از پرندگان بطور تصادفی در حال جستجوی غذا دریک ناحیه می باشند و تنها یک قطعه غذا در ناحیه مورد جستجو قرار دارد و هیچ یک از پرندگان اطلاعی از مکان غذا ندارند اما می دانند که در هر مرحله چه فاصله ای از غذا دارند. در واقع مسئله در اینجا یافتن بهترین راه برای پیدا کردن غذا می باشد. یک روش موثر دنبال کردن پرندگانی می باشد که کمترین فاصله را با غذا دارند pso مانند همه ی الگوریتم های تکاملی دیگر، با ایجاد یک جمعیت تصادفی از افراد شروع می شود که در اینجا با عنوان یک گروه از ذره ها خوانده می شوند. مشخصات هر ذره در گروه براساس مجموعه ای از پارامتر ها تعیین می شود. در این روش هر ذره یک نقطه از فضای جواب مسئله را نشان می دهد .هر کدام از ذرات دارای حافظه هستند یعنی بهترین موقعیتی که در فضای جستجو به آن می رسند را بخاطر می سپارند. به طور کلی این الگوریتم از یک مجموعه از نقاط(ذره)به مجموعه ای دیگر از نقاط در یک تکرار واحد، حرکت می کند که به طور احتمال با استفاده از ترکیب قوانین بهبودهایی حاصل می دهد.
در واقع یک الگوریتم رایانهای مبتنی بر جمعیت برای حل مسئله است. این تکنیک ها بسیار رشد کردهاند و نسخه اصلی این الگوریتم به طور واضحی در نسخه های امروزی قابل شناخت است. تاثیر گذاری اجتماعی و یاد گیری اجتماعی یک شخص را قادر میسازد تا ثبات دانستنیهایش را برقرار سازد. انسانها مسائل شان را به کمک صحبت با دیگران و نیز به کمک برهم کنش با باورهای شان، گرایش هایشان و تغییر رفتارشان حل می کنند؛ این تغییرات را می توان به طور نمونه به شکل حرکت افراد به سوی یکدیگر در فضای آگاهی اجتماعی مجسم کرد. ساختار ارتباطی یا شبکه اجتماعی برای واگذار کردن هر همسایگی به یک فرد تعریف شده تا آن فرد با آن همسایگی بر هم کنش داشته باشد. سپس گروه کارگزاران به عنوان مهمان های سر زده برای راه حلهای مسئله تعریف میشوند که آنها را به نام "ذرات" نیز می شناسیم؛ از این رو آنها را "ذرات دسته جمعی" نام نهاده ایم. یک فرآیند تکراری برای بهبود کاندیداها در طی حرکت ذرات در نظر گرفته شده است. ذرات مکررا شایستگی راه حلهای کاندیدا را ارزیابی میکنند و موقعیتی را که در آن بهترین موفقیت را داشتهاند، به خاطر می سپارند. بهره راه حل کارگزاران "بهترین ذره" یا "بهترین محل" نامیده میشود. هر ذره این اطلاعات را برای دیگر ذرات موجود در همسایگی قابل دسترسی میکند.
همچنین آنها نیز میتوانند ببینند که دیگر ذرات موجود در همسایگی در کجا بهترین موفقیت را داشتهاند.
PSO تحت نامهای مختلفی همچون الگوریتم انبوه ذرات، الگوریتم ازدحام ذرات و الگوریتم پرندگان درایران شناخته شده است.عبارت Swarm در زبان انگلیسی به اجتماع دسته انبوهی از جانوران و حشرات اشاره می کند. در زیر یک swarm از زنبور ها را می بینید.
متن کامل را پس از پرداخت وجه می توانید دانلود نمایید.لطفا مشخصات خواسته شده را جهت پیگیری پرداخت دقیق وارد نمایید.
نوع فایل : word فایل زیپ شده
تعداد صفحات 85
حجم : 930 kb
مبلغ قابل پرداخت 65000 ریال
پس از پرداخت موفق وجه به صورت خودکار به صفحه دانلود هدایت می شوید و می توانید فایل را دانلود کنیددر صورت هرگونه مشکل با پشتیبانی 09357668326 تماس بگیرید.